Broadband circularly-polarized infrared emission from multilayer metamaterials
نویسندگان
چکیده
Development of a 2D metamaterial that preferentially emits broadband circularly-polarized (CP) infrared radiation is hindered by the fact that orthogonal electric-field components are uncorrelated at the surface of the thermal emitter, a consequence of the fluctuation-dissipation theorem. We achieve broadband CP thermal emission by fabricating a meanderline quarter-wave retarder on a transparent thermal-isolation layer. Behind this isolation layer, in thermal contact with the emitter, is a wire-grid polarizer. Along with an unavoidable linear polarized radiation characteristic from the meanderline, we measured a degree of circular polarization (DOCP) of 28%, averaged over the 8to 12 μm band. ©2011 Optical Society of America OCIS codes: (160.3918) Metamaterials; (260.5430) Polarization; (030.1640) Coherence; (030.5620) Radiative transfer; (120.5410) Polarimetry; (350.5610) Radiation. References and links 1. F. Marquier, C. Arnold, M. Laroche, J. J. Greffet, and Y. Chen, “Degree of polarization of thermal light emitted by gratings supporting surface waves,” Opt. Express 16(8), 5305–5313 (2008). 2. J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997). 3. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005). 4. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation,” Phys. Rev. B Condens. Matter 37(18), 10803–10813 (1988). 5. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard, “Highly directional radiation generated by a tungsten thermal source,” Opt. Lett. 30(19), 2623–2625 (2005). 6. V. Demir, I. E. Araci, A. Kropachev, T. Skotheim, R. A. Norwood, and N. Peyghambarian, “Nanoamorphous carbon as a blackbody source in plasmonic thermal emitters,” Appl. Opt. 50(2), 218–221 (2011). 7. Y. Ueba, J. Takahara, and T. Nagatsuma, “Thermal radiation control in the terahertz region using the spoof surface plasmon mode,” Opt. Lett. 36(6), 909–911 (2011). 8. N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, and E. Hasman, “Extraordinary coherent thermal emission from SiC due to coupled resonant cavities,” J. Heat Transfer 130(11), 112401 (2008). 9. T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in near fields of thermal sources: effects of surface waves,” Phys. Rev. Lett. 88(12), 123902 (2002). 10. A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85(7), 1548–1551 (2000). 11. M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett. 96(12), 123903 (2006). 12. B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129(1), 17–26 (2007). 13. M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005). 14. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, “Simple layer-by-layer photonic crystal for the control of thermal emission,” Appl. Phys. Lett. 86(26), 261101 (2005). 15. M. Garín, T. Trifonov, D. Hernández, A. Rodriguez, and R. Alcubilla, “Thermal emission of macroporous silicon chirped photonic crystals,” Opt. Lett. 35(20), 3348–3350 (2010). 16. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006). #148230 $15.00 USD Received 2 Jun 2011; revised 20 Jun 2011; accepted 21 Jun 2011; published 28 Jun 2011 (C) 2011 OSA 1 July 2011 / Vol. 1, No. 3 / OPTICAL MATERIALS EXPRESS 466 17. S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000). 18. N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons,” Appl. Phys. Lett. 86(19), 191102 (2005). 19. J.-H. Lee, J. C. W. Lee, W. Leung, M. Li, K. Constant, C. T. Chan, and K.-M. Ho, “Polarization engineering of thermal radiation using metallic photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3244–3247 (2008). 20. J. C. W. Lee and C. T. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007). 21. O. G. Kollyukh, A. I. Liptuga, V. Morozhenko, V. I. Pipa, and E. F. Venger, “Circular polarized coherent thermal radiation from semiconductor layers in an external magnetic field,” Opt. Commun. 276(1), 131–134 (2007). 22. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999). 23. M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009). 24. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999). 25. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express 18(5), 4557–4563 (2010). 26. D. Goldstein, Polarized Light, (Marcel Dekker, 2003). 27. E. C. Zimmermann and A. Dalcher, “Incoherent radiative properties of an opaque body,” J. Opt. Soc. Am. A 8(12), 1947–1954 (1991). 28. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge, 1995). 29. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge, 2006). 30. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3: Elements of Random Fields, (Springer-Verlag, 1989). 31. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon Press, 1960). 32. G. S. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries,” Phys. Rev. A 11(1), 230–242 (1975). 33. C. Henkel, K. Joulain, R. Carminati, and J.-J. Greffet, “Spatial coherence of thermal near fields,” Opt. Commun. 186(1-3), 57–67 (2000). 34. N. R. Labadie and S. K. Sharma, “A novel compact volumetric metamaterial structure with asymmetric transmission and polarization conversion,” Metamaterials (Amst.) 4(1), 44–57 (2010). 35. A. Resnick, C. Persons, and G. Lindquist, “Polarized emissivity and Kirchhoff‟s law,” Appl. Opt. 38(8), 1384– 1387 (1999). 36. J. J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtz‟s reciprocity principle and Kirchhoff‟s law,” J. Opt. Soc. Am. A 15(10), 2735–2744 (1998). 37. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves. Theories and Applications, (J. Wiley, 2000). 38. J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006). 39. S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18(13), 13345–13360 (2010). 40. M. Schmidt and F. Schwertfeger, “Applications for silica aerogel products,” J. Non-Cryst. Solids 225, 364–368 (1998). 41. L. W. Hrubesh and R. W. Pekala, “Thermal properties of organic and inorganic aerogels,” J. Mater. Res. 9(3), 731–738 (1994). 42. J. A. Ruffner, P. G. Clem, B. A. Tuttle, C. J. Brinker, C. S. Sriram, and J. A. Bullington, “Uncooled thin film infrared imaging device with aerogel thermal isolation: deposition and planarization techniques,” Thin Solid Films 332(1-2), 356–361 (1998). 43. P. E. Hopkins, B. Kaehr, L. M. Phinney, T. P. Koehler, A. M. Grillet, D. Dunphy, F. Garcia, and C. J. Brinker, “Measuring the thermal conductivity of porous, transparent SiO2 films with time domain thermoreflectance,” J. Heat Transfer 133(6), 061601 (2011). 44. P. E. Hopkins, B. Kaehr, E. S. Piekos, D. Dunphy, and C. J. Brinker, “Minimum thermal conductivity considerations in aerogel thin films,” manuscript in preparation (2011). 45. W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
منابع مشابه
Circularly Polarized Circular Slot Antenna Array Using Sequentially Rotated Feed Network
This paper presents the design, simulation, and measurement of two low-cost broadband circularly polarized (CP) printed antennas: a single element and an array at C band. The proposed single element antenna is excited by an L-shaped strip with a tapered end, located along the circular-slot diagonal line in the back plane. From the array experimental results, the 3 dB axial ratio bandwidth can r...
متن کاملNovel Circularly Polarized Substrate Integrated Waveguide SLOT Antanna
Circularly-polarized antenna is built based on a new SIW (substrate integrated waveguide)structure which contains cavity-backed resonator and a conventional polarized ring with twosquare slits in inner and outer ring that differ 90° at position and is proposed for right-handedcircular polarization (RHCP) and fabricated in two separate layers. A broadband impedancebandwidth of 13.9% and a RHCP a...
متن کاملNovel Circularly Polarized Substrate Integrated Waveguide Slot Antenna By Using A Polarizer Technique
circularly-polarized antenna is built based on new SIW(substrate integrated waveguide)structure which contains cavity-backed resonator and a conventional polarized ring with twosquare slits in inner and outer ring that differ 90° at position and is proposed for right-handedcircular polarization (RHCP) and fabricated in two separate layers. A broadband impedancebandwidth of 13.9% and a RHCP axia...
متن کاملHighly flexible broadband terahertz metamaterial quarterwave plate
P A P ER Abstract Metamaterials offer exciting opportunities that enable precise control of light propagation, its intensity and phase by designing an artificial medium of choice. Inducing birefringence via engineered metamolecules presents a fascinating mechanism to manipulate the phase of electromagnetic waves and facilitates the design of polarimetric devices. In this paper, a high-efficienc...
متن کاملCircularly polarized light detection with hot electrons in chiral plasmonic metamaterials
Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011